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DYNAMIC "G OF ELASTIC STRUCTURES: 

CRITWIA AND ESTIMATES* 

Bernard Budianslcy 
Harvard University, Cambridge, Massachusetts 

ABSTRBCT 

The concept of the buckling of an elastic structure subjected to time- 

dependent loads is examined critically and criteria for dynamic buckling are 

reviewed and discussed. Attention is restricted to structures that are 

sensitive to initial imperfections, and hence are prone to catastrophic 

failures. Generalized estimates are made for the dynamic buckling strengths 

of such structures subjected to varbus loading histories, 

INTRODUCTION 

There have been numerous studies in recent years on dynamic buckling, 

but this paper does not pretend to survey these developments comprehensively. 

Rather, attention will be limited to the recapitulation, assessment, and 

expansion of a general approach to the problem that has been presented earlier 

(Budiansky and Hutchinson, 1964; Hutchinson and Budiansky, 1966). In this 

approach only &perfection-sensitive structures that are prone to catastrophic 

buckling failure are explicitly studied, Analytic specification of such 

* 
Presented at the International Conference on Dynamic Stability of 
Structures, Northwestern University, October 18-20, 1965. 
This work was supported in part by the National Aeronautics and Space 
Administration under Grant NsG-559, and by the Division of Engineering 
and Applied Physics, Harvard University. 
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structure~, definitions of dyaamic buckling loads, estimates of the loads 

and qualitative assesments of the accuracy of these estimates are among the 

topics to be presented. 

STATIC AND DYNAMIC LOADS 

Static bucklfnk of a strcicture d e r  dead (constant directional) loading 

can be studied by assuming the application of loads q = A50 , where qo 

fixed, and where the scalar multiplier A is supposed to increase very slowly 

from zero. The critical value A s  of this scalar that causes buckling will 

be called the static bucklinq load. 

of loads q o  will be specified by the time-dependent loading q = Af(t)qo , 

where the time variation f(t) 

Dpamic buckling for a given f(t) and qo is studied in the present approach 

by consideration of the enseshle of structural responses associated with the 

ensemble of loading histories q = Af(t)qo generated by various values of A . 
The critical value of 

the d m a d c  bucklinq load, and designated by 

is - I 

I 
Dynamic application of the same distribution 

-9 m... - 
is normalized so that its maximum value is unity. 

- 

LI - 
A that corresponds to dynamic buckling will be called 

AD . 
Criteria for establishing As as well as AD will be described later, bvt 

it may be noted now that attention will be restricted to imperfection-sensitive 

structures, for which both AS and AD may be greatly influenced by small 

geometrical imperfections. 

associated with it a classical buckling load AC (necessarily bigger than AS ) 

that arises as an eigenvalue in the usual formulation of buckling as an 

equilibrium-path bifurcation problem. 

exploration, for various tlme-variations f(t) , of the relations between the 

three critical loads A s  , Xc , and AD . 

It will be assumed that the perfect structure has 

iJlost of this paper will be devoted to the 
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A brief but general discussion of static buckling, based on the theory of 

&iter (1945, 1963), w i l l  now be given in order to expose the concept of 

*perfection-sensitivity, reveal the meaning of the static buckling load 

and lay the foundation for subsequent analyses of dynamic buckling. 
As , 

STATIC BUCKLING 

Field variables and equations 

Suppose that under the loadhg q the elastic stnxture *-der consideration - 
acquires displacements 2 , strains ft , and stresses 2 . (These field 

variables are to be interpreted in a generalized sense as entities appropriate 

to the structure and the theory used in its description. 

truss, would represent the set of joint displacements; in a shell E might 

consist of the distributions of the membrane-stress and bending-moment tensors.) 

These variables will be required to satisfy the strain-displacement relation 

Thus, in a pin-jointed 

(1) 1 
0.. E = Ll(u_) + 7 L 2 ( g  

where L1 and L2 are linear and quadratic functionals respectively; the 

stress-strain relation 

- u = €i(Q (2) 

where H is a linear functional; and the variational equation of equilibrium 

- a+g*  9.6% (3) 

In Equation (3) the "dot" operation is a shorthand notation that, in a term 

- a*b -.' meane the virtual work of stresses (or loads) 
(or displacements) 

statement of the principle of virtual work and only variations 

with boundary condftions on displacement would generally be permitted; the 

requirement that (3) must hold for such admissible variations 6u together 

acting throcgh straina 

k, integrated over the whole structure. Thus (3) is a 

8% consistent 

... 



2 Ti- 

C 

. 
I -4- 

d t h  the strain variation 6 5  that follows from (1) will be considered to 

guarantee equilibrium of the stresses g and loads q . If the bilinear 

functional defined by the identity 

- 

L2(*-) L2(u) c + 2Lll (u,,y) + L2(!) 

23 introduced, them the strain variation 6~ I compatible with 6% may be 

written as 

6E - = Ll(bg) + Lll(y,q 

so that 

(4) 

w i l l  be assumed valid for all 51 and 2 2  . 
Perfect structure: prebuckling, buckllno, and post-buckling bebvior 

q - A20 Apply the external loads to the perfect structure; it will be 
I 

supposed that before buckling occurs the response of the structure is simply 

- u = xEo 

- E = Ago 

- a 9 xa_o 

where the "trivial" displacement satisfies the condition 

Lll(~0,~) = 0 

for all y . Thus a linear theory is presumed valid before buckling, with 
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I The occurrence of buckling can be detected by subs t i tu t ing  

-5- 

(10) 

i n t o  t h e  field equations, l inear iz ing with respect t o  the  scalar 

simplifying the  results by using ( 9 )  and (10). 

E , and 

Then the  eigenvalue problem 

f o r  t h e  classical buckling load Ac and the buckling mode II~,E~,CJ~ is found 

t o  be governed by the  var ia t iona l  equilibrium equation, 

t h e  s t ra indisplacement  r e l a t ion  ~1 = ~1 = Ll(g1) , and the  s t resa-s t ra in  

r e l a t ion  21 = Ii(~1) . It w i l l  be assumed now tha t  only one buckling mode 

is associated with the  lowest eigenvalue 

be extended to cover the technically important case of rn-dtrple buckling modes 

(Koiter, 1945, 1963; Budlansky and Hutchinson, 1964). 

AC , although the theory can easily 

Next, in order to discover how the s t ruc ture  behaves after buckling as 

A deviates  from Ac , suppose the  magnitude of the eigenfunction 21 t o  be 

where 2 2 , ~ 3 , . . .  a re  a l l  orthogonalized t o  $1 in the  sense 

ao-L11(_U1,%> = 0 (n=2,3,. . .) (14) 

Note t h a t  (14) a lso  holds f o r  n-0 by v i r t u e  of (9), and note also t ha t ,  as 



-6- 

a consequence of (12), this orthogonality condition implies t h a t  

01 *sn - 0  (nf l )  (15) 

which, by (71, implies fur ther  that 

H($)-gi 0 

Subszituting (13) i n t o  the equilibrium equation (31, noting tha t  

6 5 "  6 $ +  €Lll(yl,slg + 52Lll(_U2,bU) - + * * e  

and using (10) and (12) t o  simplify the result gives 

This result provides the  desired information concerning the post-buckling 

var ia t ion  of with X ; thus, a f t e r  buckling, 

x - - 1 + a6 + be2 + ... 
aC 

where 

3 - 2 81 'L2 (21 1 
a -  . 21'51 
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and 

(The functions ,u2 and 52  needed in the evaluation of b , together with 

:he strain function ~2 , satisfy the strain-displacement and stress-strain 
relations 

1 
5 2  - L1 (q2) + L2(Ul)  

and, from (181, with 6g chosen orthogonal to 5 1  in the sense of (14), (151, 

the variational equation of equilibrium 

A!?o-L11(92,6:) + 2 2 * 6 e _ +  ~ l ' L l l ( : l r ~ u )  - - 0 -1 

The variation of A/Xc with 5 immediately after buckling is shown by the 

solid cumes in Figure 1 for the three cases 

a - 0 , b < 0 . 
associated with only the first and last of these cases. 

Imperfect structures and imperfection sensitivity 

a # 0 ; a - 0 , b > 0 : and 

It will now be shown that imperfection sensitivity is 

To study the influence of initial imperfections, imagine an initial 
- 

displacement ,u 

the straln 5 in terms of the additional displacement as 

to exist in the unloaded, stress-free structure, and redefine 

but continue to impose the stress-strain relation (2) and the equation of 

equilibrium (3). 

for the perfect case in a Galerkin-type solution of (3) ,  with 

6e  I = [e l  - + L 1 1 ( ~ , ~ 1 )  + L l l ( ~ , ~ a l ) l 6 E  ; this gives 

An approximate solution is effected by using the solut:'-on (13) 

6u c = g16E and 
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.,. U'L11 (s_,u_,) 
(l-A/Xc)C + aC2 + b$ + . . . - - 

21 * E l  

k -  &11 , and keep only the lowest order term in Wow let 5 to get 

(l-A/Ac)& + at2 + be3 + . . . = - x -  5 
AC 

as the modification of (20) that accounts for an initial 

shape of the buckling mode. The dotted curves in Figure 

imperfection in the 

1 are based on 
- -- 

aiyllc+~~uu (231, d iiiustrate hov d i  values of 

perturbations to the relations connecting X and 5 in the perfect case. 

it is seen that in the cases there exist load 

m a z i m a  in the variations of A with 5 . Under monotonically increasing 
loading sharp snap-buckling may be expected at theso critical values As , 
which are less than AC ; thus, with respect to buckling, the structure is 

considered to be imperfection-sensitive for 

The relations between AS and 

is assumed sufficiently small. 

are neglected In (23) It is easily found by maximizing A that 

6 provide singular 

at < 0 and a - 0 , b < 0 

a # 0 , and for b < 0 , if a = 0 

AC may be estimated for these two cases if 5 

If terms of degree higher than quadratic in 5 

for at < 0 . 
leads to 

If, however, a = 0 , then keeping terns of third degree in (23) 

for b < 0 . It will be convenient, henceforth, to refer to "quadratic 
structures" and "cubic structures" as those governed by the cases (i) 

and (ii) a = 0 , b # 0 , respectively. Note, then, that for quadratic 

a # 0 
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1 - 
structures 1- - 

xC 
O( /'si2) , whereas in imperfection-sensitive cubic structures 

= O(C2/3) ; thus, rouehly speaking, "small" imperfections make "large" 1- - AS 
xC 

changes in the buckling load. 

The abowe results for static bucltling are essentially contained in Koiter's 

work; nov dynamic considerations will be introduced. 

SI"0DE ANALYSES OF DYNUiIC BUCKLING 

Nodified equilibrium equation; Galerkin solution 

To account for inertial forces, it will be assumed that the variational 

equation of equilibrium (3) may generally be replaced by 

u 0.65 - c q*6% - M(g)*b~- (26) 

wherein dots represent differentiation vith respect to time, and the factcr 

-X(ii) - , linear in , represents the inertial loading associated with 

acceleration. It w i l l  be supposed that the reciprocal relation M(u)*y e = M(v)-u - -  
is valid, 

Considering first the imperfect quadratic structure under the loading 

q = Af(t)qo , seek an approximate solution of (26) in the form - 
u, - W t ) , u O  + F(t)_ul (275 

If the inertial forces associated with the prebuckling displacements are 

neglected -- that is, if 
repetition of the Galerkin solution that led to (23) now gives 

M(a10) is set equal to zero -- it i c  found that 

when terms in E of degree higher than quadratic are dropped. Here 
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so it *5 recognized that if 21 

is its natural frequency; otherwise, w: has an interpretation as 8 Rayleigh 

happens to be a natural vibration mode, 

quotient for frequency-squared, based on the buckling mode y1 . It will be 
convenient to refer to as the "frequency" of the mode ,u1 , whether or not 
this buckling mode is truly a natural vibration mode. 

In the case of the cubic structure, assuming 

and dropping tenus containiag M ( 2 p )  or M(,ug) gives the equation 

* 
as the result of a Galerkin solution of (291, with 6 ~ -  _ulaE . 

Equations (28) and (30) have the simple mechanical interpretation shown 

f.n Figure 2, wherein 

=he two-bar simply-supported column subjected t o  an axial load Af(t) . The 
5 is the additional displacement of the central hinge of 

bars of unit length are rigid but veigbtless, the central hinge carries a mass 

'1 , and the force-displacenent relation of the non-linear spring at the central 

hinge is either F - K(S+aS2) or F - K(C+bS3) . Then, with w: = K/N and 

i. ,~ = - b 2  and an initial displacement , Equations (28) and (30) govern the 

* 
Note that the neglect of M(n0) 
of yo as simply Af(t) in (27) and (29); significant Inertial effects 
associated with po would invalidate this assumption of a "static" 
response in the "trivial" mode. 
"cantaminating" made ,u2 is coaslstent 4 t h  retaining the old static 
relation between 22 and p1 io (29). Quite apart from such con- 
siderations, it may be noted that the terms M ( _ u o ) - ~ ~  and M(_up)*gl which 
appear in the GalerMn solution of (26) when 6, is taken as 1.1165. can 
be shown to vanish if ,u1 happens to be a natural vibration mode; under 
this circumstance the variational equation of equilibrium for vibration 
modes gives o;M(111)*6g - (11-6g , but since, by (151, 91*g2 = g1-110 = 0 , 
it follws that i9(111)*:2 = M(gi)*uo = 0 , whence 21(u2)*111 - = M(u_p) 'ul ." = 0 
by the reciprocity properties of the operator Pi . 

I s  consistent with taking the coefficient 

Similarly, neglecting the inertia of the 

G 
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additional displacement 5 in the case of quadratic and cubic springs, 
* 

respectively. 

Step loadinq 

The imperfection-sensitive cubic structure governed by Equation ( 3 0 ) ,  

with b C 0 , will be studied for the case of step loading, for which 

f(t) E E(t) , the Heaviside step function, which vanishes for 
unity for t 0 . A first integral of Equation (30) is readily found to be 

t 2 0 and equals 

frtn which it follows that the maximum displacement 

exists -- must satisfy 
E- -- if a maximum 

or (see Figure 3) 

For sufficiently l o w  positive values of 

(as a phase-plane study of (31) quickly reveals), and 

lower solution of Equation (32), as shown by the solid part of the curve 

X/Ac , S(t) is bounded and periodic, 

is given by tho- Smax 

Figure 3. But, as Figure 3 illustrates, for b 0 , there is a maximum value 

of X for which a bounded E(r) exists, and it is this maximum value that 

-7 ~3.11 be defined as the dynamic buckling A+, . This critical value AD - 
satisfies dX/dc- - 0 , and for values of X greater than AD the response 

* 
In this model, non-linear geometrical effects introduce additional terms 
of order e3 
spring characteristic. 

which are being ignored relative to those in the non-linear 
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Eit) is monotonic and unbounded. It is readily found that AD must satisfy 

The next step sets a pattern to be followed repeatedly ;tn the present studies; 

the term 6 iz[ 
Equation (25) for static buc'ding of the same structure with the same 

imperfection. 

buckling of a cubic structure under step loading the relation 

is eliminated between $quation (34) for cipamic buckling and 

This gives as the final result for the analysis of dynamic 

This relation between fX,/As) and (As/Xc) 

Figure 4. 

(aS) < o , gives the analogous result 

is shown by the dotted curve In 

An entirely similar analysis for a quadratic structure, with 

(35) 

represented by the solid curve in Figure 4. 

The results (35) and (36) are to be viewed as providing estimates for the 

ratio 

or assumed - values of (A#,) of the same structure. The more imperfect 

the structure -- and the greater its imperfection-sensitivity -- the lower will 
be As/AC , and hence the lower will be the ratio A& of dynamic to static 

5:ichling strength. Note, however, that X / A  will never be less than f i / 2  

Note, too, that the use of these results for 

(AD/Xs) in an imperfection-sensitive structure in terms of the horn -- 

D S  
XD/Xs are consistent with the 
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As 
d e s i m  of s t ruc tures  on a statist ical  basis ;  i f  under the  static loading 

a s t ruc tu re  enjoys a cer ta in  probabili ty of withstanding s ta t ic  buckling, it 

w i l l  resist dynamic buckling with the same r e l i a b i l i t y  under the  dynamic load 

[AD/A,.)[As) when the  dependence of (A,,/As) on (A&) is t ha t  given by 

Figure 4. 
U 

'upulsive loadinq 

Now consider the  impulsive loading specified by the  relatton 

a f ( t )  = n(t) (37) 

where 6 is the  Dirac d e l t a  function. Considering f i r s t  the  cubic s t ruc ture ,  

it is  e a s i l y  found t h a t  

and so a f i r s t  i n t eg ra l  of (30) is 

A bounded value of (C)- is now found to  exist only f o r  I < Icr , where 

and therefore Icr is defined as t h e  dynamic buckling impulse. Eliminating 

1 6 1 6  between (38) and (25) now gives 

2s the  r e l a t ion  between I , As , Xc , and w l  . A l imit ing r e s u l t  for a cr 
very imperfect s t ructure ,  f o r  which one can let A S / h C  = 0 , is simply 
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and this could be used as a conservztive estimate for Icr for other values 

cf XS/AC 

Repetition of the analysis for the case of the quadratic structure described 

by (28) gives 

% 2.31 [$] 'cr 

as the critical Impulse for the very imperfect structure. 

case of step loading, more conservative answers are given by the cubic structure, 

Trmsient loadinp; 

Xote that, as in the 

Consider next the rectangular loading history 

f(t) 0 1 for t < T 

f(t) - 0 for t < O , t > T  

As shown in an earlier paper (Eutchinson and Budiansky, 1966) 

be defined as the highest value of 

when efther (28) or (30) is used to characterize the structure. Fairly srrcleht- 

forwErd calculation procedures were used to find AD , and typical of the res-ilts 
obtained are the curwes sbwn in Figure 5, for the cubic structure. 

corresponds to a different value of T/T1 , the ratio of the loading duratim 
of the buckling mode. 271 to the period of vibration T - -  

W l  

T/T1 = 

AD can, again, 

A for which a bounded response exists, 

Each curve 

Note that the case 

is the same as the step-loading situation previously considered. 



The most significant implication of Figure 5 is that loads much in excees 

of the static buckling load can be applied to imperfection-sensitive structures 

without the occurrence of dynamic buckling, if they are removed soon enough; 

further, for a given duration of loading, the extent to which the static buckling 

load may be exceeded rises very sharply with increasing perfection of the 

structure (that is, with increasing A,/Xc ). 

InformatLe cross-plots of the data in Figure 5 are shown in Piguze 6, 

wherein the finite-tinte-impuise parameter * = “DA 1 * has been introduced. In 

Figure 6, I /I 

4bpdlse, is plotted against the load-duration parameter T/Ti for various 

, where Icr , as given by (39), I s  the zero-time critical T cr 

values of As/Xc The very important fact shown here is that, contrary to 

what might be expected, the  zero-time critical impulse is not generally a good 

approximation to the finite-time impulse IT needed to produce dpnasic bucklizg- 

Indeed, even if T/T1 is very low,  I constitutes an unconservative 

zpproxhation to 

cr 
5 , except when the structure is quite Imperfect 

% 1/10] . 
Additional results have been given for quadratic structures (Hutchinson 

and audiansky, 1966), and for structures under suddenly applied loads that 6.e~~:: 

linearly with time. 

Discussion 

The results obtained on the basis of the shple equations (28) and (30; 

should elearly be regarded only as generalized estimates that could be subjact 

to severe limitations on their validity. Perhaps the most serious simplifying 

assumption made was that the dynadc response could be described adequately in 

terns of the deformation pattern that occurs when the structure buckles 

statically. This does not seem too unreasonable in the case of a structure 
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having well-separated eigenvalues as the solutions to the classical static 

buckling problem, the lowest of which I s  associated with a single eigenfunction; 

but when these conditions are not met, as in the cases of multiple classical 

buckling modes, or when continuous (or nearly continuous) spectra of eigenvalues 

exist in the vicinity of the lowest classical buckling mode, the results found 

may justifiably be viewed with suspicion. 

Other questionable simplifications, perhaps less important, are the neglb-ct 

of prebuckling inertia and the disregard of degrees of non-linearity higher 

than the lowest. All of these effects will be explored to same extent in the 

rest of this paper. 

criteria for dpnamic buckling, since the simple criterion related to the 

But first consideration will be given to generalized 

exfstence of bounded solutions that has been used until now becomes inadequate 

when idealizations more complicated than those embodied in the simple equations 

(26) and (30) are introduced. 

GENERALIZED CRITERIA FOR DYW’lIC BUCKLING 

7 SinRle-mode analyses 

If the quadratic model described by (281, with a < 0 , 5 > 0 , is turzed 
into a quadratic-cubic model by the incorporation of a stabilizing cubic term 

bE3 , with b > 0 , so that 

(43)  

a bounded response #(t) occurs for all A , but sharp definitions of d y m i c  

buckling are still often possible. 

i t  is easily shown that, for sufficiently small 5 , 6- varies vfth A 

shown in Figure 7(a), when, as before, ensembles of loading histories 

In the case, for example, of step loading, 

as 

XH(t) 

I 
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and t he  associated responses E ( t )  are contemplated. A t  a critical value of 

A , t o  be defined as 

inf in i tes imal  increase i n  A . From (43), t he  re la t ion  between X and E- 

is  found t o  be simply 

AD , a f i n i t e  jump i n  6- is produced by an 

but t h a t  pa r t  of the  curve given by (44) that is shown dotted in Figure 7(a) 

is without physical significance. (For a l l  A # AD , the  response S(t) is 

2eriodic;  as X approaches AD from below the  period approaches in f in i ty ,  

and it takes an i n f i n i t e l y  long time fo r  E ( t )  t o  reach Smx . For X Lax.?@? 

t b n  AD , the  period drops t o  a f i n i t e  value again.) The value of AD or,cuzs 

a t  the f i r s t  maximum of t he  r e l a t ion  (44) f o r  A vs. E- , j u s t  as AS iS 

the, f i r s t  maximum of t he  static re la t ion  between X and 5 given by (43)  ( d t h  

the  dynamic term deleted) shown schematically i n  Figure 7(c). 

For f suf f ic ien t ly  large,  the var ia t ion  of X with Em, given by (44) 

becanes monatonie, as sketched in Figure ?(b), and the sharp defiaitfon of AD 

afforded by the r e l a t ion  of Figure 7(a) is l o s t  even though f o r  the  same value 

of 

implied by Figure 7(c). 

dynamic buckling by l e t t i n g  

the var ia t ion of X with E- . This appears to  be a reasonably p rac t i ca l  

c r i t e r i o n  f o r  X 

to imply tha t  small changes i n  A near X = AD actual ly  do lead t o  la rge  

changes i n  the response. 

- 
5 it may still  be possible f o r  there t o  be s t a t i c  snap buckling of the k in i  

It may be desirable,  then, t o  r e t a i n  the concept of 

AD be associated with the point of in f lec t ion  iri 

so long as  the inf lec t ion  i n  the  curve is pronounced enough 0 '  

Apart from the question of defining AD fo r  t h e  system described by ( 4 3 1 ,  
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it may be of i n t e re s t  t o  examine how much the r e s u l t s  found deviate from those 

already obtained f o r  b = 0 . Calculations f o r  the case of s t ep  loading give 

the  curves i n  Figure 8 for  7 = 5 and - 
apply when dynamic buckling is associated v i t h  the "jump" condition of 

* 

The so l id  pa r t s  of the curves b 1  
3 .  

Figure 7 (a) ; t h e  

of Figure 7(b). 

smp-buckl- Of 

lower values of 

dotted portions correspond to the point-of-inflection c r i t e r ion  

(The curve fo r  b/a2 = 5 stops at  

the  kind t ha t  corresponds to Figure 7(c) does not occur f o r  

2 1 
2 As/Ac = - because s ta t ic  

I s / A c  , since even the s t a t i c  curve of A vs. 5 becomes 

monotonic f o r  Imperfections higher than that associated with the  end-point of 

the  curve.) Comparison with the  curve fo r  b = 0 , reproduced from FigurP 4, 

shows that a s t ab i l i z ing  term bt3 

conservative. 

Figure 9 ,  wherein the ratio of c r i t i c a l  impulse t o  t h a t  of the case with 

b = 0 is given as a function of As/Xc f o r  several values of b/a2 . Again, 
the  dotted carves follow from a point-of-inflection c r i te r ion .  

sketches show, for  b/a2 larger  than about 1/3 the  ver ia t ion  of I with 

j u s t  makes the  old results s l igh t ly  

Similar calculations for  impulsive loading give t h e  curves of 

As the  auxi l i ixy 

no longer displays a very sharp break near the inf lec t ion  point. Thus, 

r e t a ins  meaningful significance as a buckling impulse, the simple Icr where 

model still gives conservative resul ts .  

More o r  less similar trends have been discovered from calculat ions based 

on the  d i f f e r e n t i a l  equation f o r  a cubic-quartic model 

* 
The author is indebted t o  M r .  John Wivorkoski f o r  calculat ing these 
results. 
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is added to the cubic-model equatim wherein a stabilizing term cS4 ( c  > 0) 

(30). 

when the modified definitions of AD or Icr are used, and where the point- 

of-inflection criterion really constitutes a sharp measure of buckling. 

Multiatode a~?slyses 

Again, the old results of Figure 4 and Equation (39) are conservative 

Suppose next that the behavior of the d-cal structural system being 

studied can no longer be adequately described on the basis of a single-mode 

representation, but rather requires the solution of a set of ordinary, nonlinear 

differentid equations of the 

Dynamic buckling criteria for 

form, say, 

QJ51,52, ... En;Xf(t)l = 0 (46)  

(n=l,2,. . .N) 
the establishment of AD of the types suggested 

by Figures 7(a) and 7(b) could still be used if one of tire 6's is used as 

a3scissa, or, perhaps more appropriately, if the replaced 3y scme 

overall measure of the response (as, for example, 1. In eit5er cas2 

some interesting questions arise. Is it possible to know whether the sharp 

jump criterior. of Figure 7(a) will apply in the mGlti-mode case? If so,  micht 

i: he possible to estimate Without the necessity of actually solving tlr,e 

differential equations (46)  in detail for many values of X ? Such questions 
AD 

have recently been discussed by Humphrays (1966) and the remarks that follow 

lean heavily on his observations. 

An illustrative two-degree-of-freedom problem can be associated with the 

diagram of Figure 10(a) showing contour lines of constant elevation on a 

perfectly smooth terrain. 'bagine a particle of unit mass initially at the 

bottom of one of the two bowls (51 = 52 - 0 )  and suppose it to be subjected 

to an impulse I in  the 51 direction. It seems evident that there must 
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exist a critical impulse just sufficient to send the particle over the pass 

lnto the next bowl, so that a plot of impulse versus the maximum excursion 

1x1 The kinetic energy imparted to the particle of unit 

mass by the critical impulse can clearly not be less than the elevation at the 

saddle point <3 units) and, indeed, the analogue of this lower bound was 

actually used by Hoff and Bruce (1954) to estimate dynamic buckling loads in 

an arch buckling problem. 

initial kinetic energy equal to the saddle point energy is sufficient as well 

as necessary for "buckling" and, unfortunately, it is not clear that the 

correct value of I can be found without actually solving for S l ( t )  and 

Ep(t) for many values of I . Finally, it must be realized that the terrain 
might look like that shown in Figure 10(b). 

Fizures lO(a) and (b) are identical along 

degree of freedom would be consistent with a jump in the curve of 

51 

case of Figure 10(b) a jump can no longer occur when the two-degree-of-free<om 

situation is analyzed, although it may still be possible to define a "practical" 

I 

will exhibit a jump. 

But there is no evident reason to expect that an 

cr 

The profiles of the surfaces of 

E2 - 0 , and suppression of the 52 

I versus 

which would then be applicable to both problems. But in the bowl-with-ridge 

associated with a point-of-inflection criterion. 

It may be remarked that if the functions 

ct 

\ 5n (46) are corrtinuous then 

over any finite time interval 

of 

work in principle if the response measure is maximized over an infinite time 

interval. 

determixation of X 

duratims, only the point-of-inflection criterion can really be used. 

(KTrrmerical calculation has shown, however, that the breaks in the curves of 

(0,T) the solutions must be continuous functioas 

h ; the jump criterion for dynamic buckling, if applfcable at all, can cnlg  

Hence, if multi-mode problems are to be studied numerically for the 

, and solutions are therefore found for finite time D 

X 
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versus maximum response in 

discontinuous jumps .) 

(0,T) are often so sharp that they look like 

SOME MULTI-MODE STCPZ,ES 

Inertia of the orebuckling mode: Nathieu couplinlg 

The assumption made concerning the neglect of the inertial forces 

associated with the prebuckling deformation d e  t.10 precludes the possibil1t:T 

of discussing the kind of instability studied by Goodier and WcIvor (1964) 

wherein oscillations in the prebuckling deformation mode feed energy into a 

buckling mode. 

which this phenomenon might be expected to intrude upon the results that have 

been obtained in the present paper for dynamic buckling loads. 

An attempt will now be made to estimate the conditions under 

Consider the quadratic structure, and replace the Galerkin assumption (27: 

by the expression 

in the dynamic equilibrium equation (26). Assuming, for simplicity, that y1 

is a natural vibration mode, the varia>ion 6% E 20 in (26) then gives 

order 52 and have been dropped, and where 

is the "frequency" of the prebuckling mode. Taking 6% 5 "I t t l  

gives 

to order t2 . Now consider step loading, for which the solution of (48) I s  
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Substitution of (SO) into (49)  gives the relation 

- x (l-cosT) 5 + (non-linear terms) = 
AC 

- - 
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( 5 1 )  

where T - wot . Now the linear terms in 5 are precisely those that appear 

in the Mathieu equation, and, in the absence of all of the nonli~ear telm-s in_ 

(Sl), would lead to instability of the Mathleu type for certain combinations 

of X/X, and ful/wo) . From the known properties of solutions to liathielr's 

equation (see, for example, Stoker, 1950), the following question can now be 

answered: For what combinations of Xs/Ac and 12) will the linearized 
equation (51) have stable solutions when 

cgmbinations of Xs/Ac and wl/w0 (for - e  1 ) are given by the doubly- 

hatcher! region of Figure 11. 

X = AD , as given by Figure 4? 
W l  

w0 

Such 

In the sfngly-hatched region, while there is no 

Mathieu instability at X = AD , there nevertheless are lnstzbilities at lover 
values of X . This chart completely neglects, of course, fnteraction between 
the two phenomena whose potential interaction is being assessed and must, 

therefore, be regarded as no more than suggestive. 

to believe, that for values of 

It is nevertheless difficult 

q / w g  less than, say, 114, there would be any 

need for concern about a Mathieu-type instability before the occurrence of 

dynamic buckling under step loading. The situation turns out to be not quite 

53 optimistic for hpulsive loading, Impulsive loading Af(t) = Iti(t) gives 

as the solution of (48), and then the linear, homogeneous part of (49)  gives 

the Yathleu equation 
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Once again, the known behavior of solutions t o  Mathieu's equation and the  

results found earlier for Icr provides the in fomat ion  i n  Figure 12(a), t he  
f W l t  

cross-hatched regions of which show tonbinations of aEd for 

which Mathieu i n s t a b i l i t y  is induced a t  as given by (411, or at some 

lower 'I . On t he  other  hand, if the  conservative estimate Icr = 2.31[21 is  

used, those regions shrink t o  the domain shown i n  Figure 12(b). 

I - Icr 

All of these concerns about t h e  poss ib i l i t y  of Pfathieu-type resonances 

should be tempered somewhat by the real izat ion that Mathieu i n s t a b i l i t y  is  often 

associated with mapy cycles of an osc i l la t ion  tha t  grows i n  amplitude as 

opposed t o  the  "one-shot" dynamic buckling contemplated by the criteria of t h i s  

paper. 

po ten t ia l  dangers of a Mathleu in s t ab i l i t y  than it would i n  retarding a more-cr- 

less monotonic dynamic buckling. 

Axially compressed cylinders 

Thus, damping may be expected t o  be more ef fec t ive  In a l lev ia t ing  the 

The static post-buckling analysis of a long ax ia l ly  compressed c i rcu lar  

cyliader differs from the general patterns already given because there exist 

many d i f f e ren t  modes at  one and t he  same buckling stress. 

Koiter, the analysis can be extended to  handle such cases, and in the  case of 

the cylinder an approach t h a t  seems t o  provide Insight i n t o  the post-buckling 

behavior has been followed (Budiansky and Hutchinson, 1964) by l e t t i n g  the  

icitial and additional normal displacements be 

But, following 

; P Tl&) + f 2 J 2 )  
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respectively, where w(') is the axis-tric buckling mode and w ( ~ )  is 

the square-buckle mode. 

conjunction with Donaell's equation) then leads to the two coupled equations 

Using (51) in a Galerkin solution of (26) (in 

(52) 

.& - 1 3% (1-vi . Dropping the time 
32 W S A ~ Z ~ ,  if turns out, w2 * wl , and e = 

dlependect terms, (and taking f 5 l), permitted the evaluation of AS for a 

variety of values of 51 and . Then AD was found, for step-loading, 

f D r  the same values of E1 and 52 , by Solving the differential equation 
auEerically and using as the criterion for dynamic buckling the sharp 

transition from bounded to unbounded response that was very evident from the 

numerical results. 

conservative estimates for AD/Xs . The lowest values of AD/Xs occurxii for 

5, = 0 . 
neglezting the inertia of the axisymmetric mode, in which czse one fincis 

- 

It was found that the lower curve of Figure 4 always gzve 

- 
For this case, an excellent analytical approximation is found by 

and t..,~ equation gives a relation between 'D/'S 

between the tvo curves in Figure 4. 

Similarly detailed studies have not been made for hpulsive ioading but 

it is interesting that making the same ass-snptions 51 = 0 and w 1  = thst 

were so usegul fn the step-loadiag case leads to 

I 
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which is between the  reeults (39) and (41) fo r  the quadratic and cubic models. 

(Bere 0 2  is , wbere R = cylinder radius, E Young's modulus, and ZR 0 

P - density.) 

These re su l t s  f o r  t he  cylinder,  though they have a cer ta in  internal 

p leua ib i l i ry ,  can not ,  of course, be regarded as more than suggestive of the  

range in which critical loads and impulses might lie. 

only have Jus t  t w o  of t h e  many existing classical modes been considered but 

a l so  the  multitude of modes associated with eigenvalues higher, but close to ,  

t he  lowest critical stress has been ignored. 

modes, and the di f fe ren t  natural  frequencies of the  modes, may be expected t o  

enter  i n t o  the  dynamic buckling process i n  a way that formulas l i k e  (53) and 

(54) can simply not encompass. To provide insight  i n t o  such questions, some 

results of a many-mode study of an a r t i f i c i a l  s t ruc ture  having random 

imperfections is given next. 

(54) f o r  impulsive loading is probably less r e l i a b l e  than (53) for s t ep  loadbl;. 

The reason is that not 

Imperfections i n  a l l  of these 

As will be seen, the  results w i l l  suggest tha t  

A SPECIAL NAMY-MODE STUDY 

The problem t o  be discussed is tha t  of the s tz t ic  and dynamic bucklhg ef 

as In f in i t e ly  long column (see Figure 13) having a random i n i t i a l  lateral 

displacement, and supported l a t e r a l l y  by a continuous e l a s t i c  foundation t'mt 

provides the  non-linear (cubic) restoring force per un i t  length 

q klv - k3w3 (ki,k3 > 0 )  (55)  

wiiere w is the  addi t ional  displacement induced by an axial  load Af(t) . 
This s t ruc ture  may c lear ly  be expected t o  be imperfection-sensitive, because 

of the  "softening" spring support. 

of Figure 2) non-linear geometrical e f fec ts ,  and a l so  neglecting weve ef fecrs  

Ignoring (as i n  the  case of the cubic model 
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due to  axial inertia, permits the  derivation of t he  d i f f e ren t i a l  equation of 

motion 

m 

where E 1  is the 

(55 )  

bending s t i f fnes s ,  m is mass per uni t  length, and is 

the  i n i t i a l  displacement. The perfect s t ruc ture  ‘has the  s t a t i c  buckling modes 
1 - 

w = sin corresponding t o  buckling loads X = (EX k1)2(v+ $1 , so 

that the critical (lowest) buckling load is A 1  - Ac = 2 m  , corresponding 

to v - 1 . The buckling modes are a lso  vibrat ion modes of the  unloaded 

perfect  s t ructure ,  corresponding t o  frequencies 

arid the  frequency of the  critical buckling mode is then 

- - 1  

The contrast  between t h i s  s t ruc ture  and the  simple model of Figure 2 can nov 

be underscored. 

buckling load, there  is  a continuous spectrum of buckling loads and modes; 

s imilar ly ,  there  is a continuous spectrum of vibrat ion frequencies. 

application of the  dynamic buckling results fo r  the shp3.e model would involve 

only A 1  , the  lowest buckling load, and 01 , the  frequency of t h i s  mode. 

But clear ly ,  one should expect deviations from the elementary r e su l t s ,  and the  

purpose of t h i s  study I s  t o  explore these depiations. 

Instead of a s ingle  buckling mode associated with a s ingle  

Uncritfcal  

The d i f f e r e n t i a l  equation (56) can now be conveniently non-dimecsiomlzzed 
- 

by l e t t i n g  

..md introducing 

be the root-mean-square value of the i n i t i a l  imperfection w , 
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- 
v - 

U', 
A 

T - [:I* 
to get 

The problem of finding the static buckling load As for imperfections 
- 

described by a stationary random Gaussian function u has been solved 

epproxlmately (F'raser, 1965) by the method of equivalent linearization. In th-' i 

work the correlation function for , defined by R ( t )  0 lim g- f u(y);;(y-LC)~y 

-a a s  choses as 

giving the corresponding power spectral density 

The method of equivalent linearization involved the replacement of ru3 i n  

Squation (53) by 

of A2 5 (u2)8ve as a function of k , c , - , and 

EU , the subsequent deduction from the static form of (58), 

E , and fiirally the use 
hC 

of the assumption 

(u4Iave - 3(U2lave (61) 

appropriate to a linear Gaussian process to deduce the coadition 
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from the stipulation ~ ( u ~ ) ~ ~ ~  - r(u 4 )ave . With the elimination of E the 

implicit relation thus developed between A / A c  and A2 (for given values of 

4t , c , and r ) then permitted the discovery of a maximum value of A , 

identified a8 As 

A similar procedure can be followed in conjunction with the full dynamic 

equation (58). For the case of step loading, replacing ru3 by pu leads 

to the interesting conclusion that as t becomes infinite, A2 approaches a 

definite limit that depends only on X/A, , k , c , and In the dynamic 

case, the assigmaent of a value for p 8tems from a consideration of an 

p . 

averaging process involving a first time integral of ( 5 8 ) ,  and gives 

~ ( u ~ ) ~ ~ ~  - y (u4Iave , so that, when (61) I s  invoked, p = 

of p then provides a relation between A / A c  and the lfmiting value of A' 

as t * . The condition for calculating the dynamic buckling load AD is, 

finally, taken as the nowexistence of this limit. 

r 3 .A2 Elimination 

An entirely similar 

procedure works for impulsive loading and the calculation of Icr . 
The details of the calculations described will be presented elsewhere, 

but a few interesting numerical results will now be discussed. It vas found 

that for a very wide range of values of k and c in the assumed correlation 

function for the imperfections, the variation of AD/AS with Xs/Ac for the 

case of step loading remained in the very narrow band shown in Figure 14. 

Furthermore, quite independently of k and c , the limiting value of XD/As 

for the case of a very imperfect structure (A&, + 0 )  is 2/J? 2 1.15 . 
These results - dyaamlc buckling loads higher than static for ste;, 

loadings -- seem paradoxical but their derivation is vulnerable only in the 

use of the method of equivalent linearization. With a little effort, it is 
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possible to accept their plausibility as a consequence of phase interference 

among many modes that happens to be more effective dynamically than statically. 
Q 

In any case, the results surely tend to reinforce one's confidence ia the 

reliability of the predictions for dynamic buckling under step loading based 

on the simple am-degreeof-freedan models. 

The calculations made for impulsive loading do not allow such optimistic 

conclusions. 

structure will be displayed by showing in Figure 15 how the ratio of the 

critical impulse I to IS,M, , the impulse given by the formula (40) for the 
simple cubic model, varies with the spectral parameters k and c . The 
frequency used in the slmple-nrodel formula was (571, that of the critical 

Just same results for the limlting case of a very Imperfect 

Suckling mode. 

simple-model formula would be unconservative, and so, as Figure 15 shows, 

Values of this ratio less than unity imply that use of the 

mconservatism is the rule rather than the exception over the (k,c) domatn of 

hperfectfon spectra. With hindsight, these results are not implausible; the 

simple model could be expected t o  be reliable only if wave numbers in the 

Tlcinity of v - 1 were predominant in the buckling process. But for high k 

the spectrum given by (60) is relatively flat, and for low k and high c , 
the spectra are peaked near v - e ; evidently, the imperfectfon spectra 

strongly influence the subsequent deformation spectra, and so o d y  for low k , 
and c near or less than unity are the slmple-model results conservative for 

impulsive loading. 

:< 
If the results right, mathematically, they imply that a little 
damping would permit this ideal structure to withstand a step lozding 
greater than As for a while -- but then, as damping gradually 
eliminated the oscillations, it would buckle staticaliyl 
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CONCLUDING REMARKS 

A general theory of dynamic buckling of imperfection-sensitive elastic 

structures has been presented. 

be widely applicable, but their use must be tempered by careftil consideration 

~f the exteat to which the basic assumptions of the theory are met. 

particular, serious deviations from the results of the general theory could 

occur when the structure under consideration enjoys a multiplicity of buckliIig 

modes near the lowest classical buckling load, and is subjected to impulsive 

or short-duration loadings, 

The results obtained therefrom are believed to 

13 
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FIG. 1 LOAD -DEFLECTION CURVES 



FIG. 2 SIMPLE MODEL 



x 
b <  0 

FIG. 3 STEP LOADING OF CUBIC STRUCTURE, 
LOAD VS. MAXIMUM DEFLECTION 



FIG. 4 DYNAMIC BUCKLING, STEP LOADING 



FIG. 5 DYNAMIC BUCKLING, TRANSIENT LOADING 
(CUBIC STRUCTURE) 
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FIG. 8 DYNAMIC BUCKLING, STEP LOADING, QUADRATIC- 
CUBIC MODEL 

G. 8 DYNAMIC BUCKLING, STEP LOADING, QUADRATIC- 
CUBIC MODEL 
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MATHIEU INSTABILITY AT A =  A 0  

hy MATHIEU INSTABILITY AT SOME 
X LESS THAN AD 

FIG. 11 MATHIEU INSTABILITY, LINEARIZED 

EQUATIONS, STEP LeADING 
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MATHIEU INSTABILITY AT I = 2.31 (Tj;") 
OR AT SOME LOWER I .  

m 

FIG. i2 MATH IEU INSTABILITY, LINEARIZED EQUATIONS, 
IMPULSIVE LOADING. 
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FIG. 14 DYNAMIC BUCKLING, COLUMN WITH RANDOM 
IMPERFECTIONS, STEP LOADING 
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